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Abstract

The goal of this research is to determine the feasibility of performing integrated

network experimentation using cloud services. This research uses performance metrics

to compare computing architectures constructed in the cloud to architectures that run

on traditional networks. If so, then cloud network architectures will display the same

expected behavior as traditional network architectures, thus allowing the construction of

networking testbeds at potentially substantial cost savings. Since the Amazon cloud does

not support broadcast or multicast traffic, distributed applications face a challenge. Many

distributed applications use broadcast or multicast to communicate real-time information.

This research includes a case study for developing a distributed network application in

the cloud which overcomes the restriction on broadcast and multicast traffic. During

performance testing, the baseline network and cloud network configurations are provided

statistically equivalent traffic workload. Metrics such as packet loss, delay, jitter and

throughput are compared to determine relative performance. Analysis of the experimental

results shows that in each case, the cloud network configurations performed at or above

the performance level of the baseline network. Therefore, the public cloud infrastructure

is suitable for performing integrated network experimentation. This research continues

Project Everest’s efforts to leverage cloud services for network experimentation. Project

Everest is a framework which aims to combine emulation and cloud infrastructure into

a single testbed using the Amazon Elastic Compute Cloud (EC2). Their tests indicate

satisfactory cloud performance, but they recommend testing cloud network performance

under various workload. This research carries out those performance tests.
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LEVERAGING THE CLOUD FOR

INTEGRATED NETWORK EXPERIMENTATION

I. Problem Statement

1.1 Background

T
he Department of Defense (DoD) recognizes the need to create accurate representa-

tions of networking environments for the purposes of network planning, optimiza-

tion, testing, and post-incident investigations. These virtual networked environments are

distributed networks that allow communication between multiple systems in real time.

Having a test network that is separate from the production network can be invaluable to

network research and development however, it can also prove to be a costly venture. There-

fore, researchers employ various methods to accomplish these objectives while minimizing

required resources.

The traditional method to creating models of these environments uses discrete-event

packet-level simulation. While this approach provides complete control, absolute repeat-

ability of experiments, ease of use, execution efficiency, scalability, and lower relative cost,

it comes at the cost of detail and realism [2]. For more realistic experiments, network

emulation testbeds have been built out of real hardware networks consisting of hundreds

of devices. Emulation combines real network elements and protocol implementations with

simulated elements such as network links and background traffic. The primary difference is

that simulation executes in virtual time, whereas emulation executes in real time. Although

emulation is more realistic, it is not repeatable. Integrated network experimentation

combines simulation and emulation into one experiment, each representing different

portions of the topology [3].
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Cloud computing platforms provide various resources to consumers at affordable

prices such as storage, compute power, and email services [4]. Commercial cloud services

provide reliable, scalable, and inexpensive computing platforms that can potentially meet

the DoD’s network modeling and experimentation needs. This research investigates the

potential to use a cloud service such as Amazon Web Services (AWS) as a testbed for

prototyping virtual networked environments using integrated network experimentation.

1.2 Statement of Problem/Issue

The goal of this research is to determine the feasibility of using the cloud to perform

integrated network experimentation. That determination is based upon the performance of

the cloud network relative to baseline network configurations under statistically identical

workload conditions. Specifically, the goal is to make the following determinations:

• What techniques do researchers use to conduct network experimentation?

• What tools are used to implement these techniques?

• What effect on cloud testbed performance does physical distance between virtual

machine (VM) instances have?

• What is the difference in packet loss, round-trip time, jitter and throughput among

various Amazon cloud platforms, compared to a baseline platform?

1.3 Scope, Limitations, Assumptions

Amazon publishes specifications for VM instance types, but not the underlying

hardware infrastructure that physically power these VMs. Consequently, users are unaware

about details such as the number of VMs that are mapped to any single physical device, and

the amount of available bandwidth between physical devices, among other details. The lack

of knowledge regarding inter-region and intra-region link capacities, along with the latency

and overhead associated with network management and virtualization poses a limitation.
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Users can control the creation of VM instances, including their regional locations, but not

the underlying hardware infrastructure itself. Therefore, although this research attempts to

make determinations about the underlying infrastructure’s influence on performance, this

research focuses on the user-controlled aspects of the cloud configurations. Furthermore,

this research does not consider security aspects of the cloud. Finally, this research assumes

that Amazon’s policies for network management and load balancing provide a viable

platform to perform the desired testing.

1.4 Methodology

To determine if the cloud can adequately perform integrated network experimentation,

network performance in the cloud is considered. This research measures the performance

of four unique cloud platforms, and compares them to a baseline platform. Cloud

performance is expected to not be statistically less than baseline performance. The factors

that are expected to have the most impact on performance are the instance type, Amazon

Availability Zone of virtual machine instances, packet size, packet arrival distribution and

traffic protocol.

1.5 Overview of Thesis

The remainder of this thesis is organized as follows. The Literature Review

discusses relevant theories, problems, and methodologies used in other published sources.

Next, the Methodology describes the process of identifying and gathering field data.

Chapter IV consists of data analysis and results. Additionally, this chapter interprets

the validity, reliability and applicability of the results. Chapter V discusses a case study

using distributed network applications in a cloud environment. Finally, the Conclusion

summarizes the main points of the thesis, addresses the research questions and makes future

research recommendations.
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II. Literature Review

T
his chapter reviews literature from published sources that are most relevant to this

research. The Introduction section provides a topic statement, explanation of key

terms, justification for research and scope of the review. The Introduction section is

followed by a review of network experimentation techniques used by NS-3, OPNET,

Emulab, Planetlab, VINI, Live Network Testing, Everest and techniques implemented

by this research. The Conclusion section summarizes the techniques and research

contributions presented, and introduces the research methodology.

2.1 Introduction

This literature review explores various network experimentation techniques. Tech-

niques are logically grouped under simulation, emulation, and other techniques. Informa-

tion presented is a result of scholarly article searches, and reviewing each article’s sources.

The review is not meant to be exhaustive, but a survey of the most prominent techniques

currently in use. Accurate models of networking environments facilitate network planning,

optimization, testing, and post incident investigations. The cost of deploying a complete

testbed containing multiple networked end hosts, intermediate devices and communica-

tions links can be prohibitive to many organizations. Consequently, network simulation

and emulation are widely used experimental techniques that save time and money in ac-

complishing this task [5]. The remainder of this section explains simulation and emulation,

providing baseline knowledge before proceeding with a review of the techniques.

Simulation uses discrete events to model real world networks at the packet level,

providing repeatable network experimentation in a controlled environment [2]. Since

every parameter of the experiment can be controlled, simulations can scale to large

numbers of elements that can be programmed quickly. Additionally, simulation models

4



are easy to configure and relatively inexpensive to modify, compared to changing a real

network. These characteristics allow experimenters to build a rapid prototype-and-evaluate

environment, capable of performing analysis of a wide variety of networking scenarios

[2, 5]. Simulation provides this versatility to experimenters through the use of abstraction.

Experimenters are able to choose the level of detail included in the simulation. As more

detail is included within the simulation, the simulation more accurately reflects the real

network. Conversely, as more details are abstracted away from the simulation, generally

speaking, accuracy decreases, but the model is simplified and more efficient to execute.

Thus, experimenters are forced to choose between efficiency and accuracy when deciding

upon the simulation’s level of abstraction without any systematic means of validating the

choice of abstraction [6]. This presents challenges for experimenters. The abstraction

level used in simulation may not allow experimenters to account for low level effects, or

what might seem like small details, such as interrupts associated with heavy traffic loads.

Furthermore, since simulators do not implement real protocols, they cannot integrate real

networking elements into the simulation, thus sacrificing realism in the experiment.

Emulation combines real networking elements such as end hosts and protocol

implementations with simulated elements such as background traffic, network links and

intermediate nodes [2, 7, 8]. This technique allows experimenters to attach end systems

to an emulator, and systems behave exactly as they would on a real network. By adding

real-world interaction, emulation attempts to address the deficiencies of simulation, while

retaining strengths such as repeatability and ease of configuration [7]. Emulation has

generally taken on two forms: network emulation and environment emulation. Network

emulation allows simulated network components to communicate with real-world protocol

implementations. Environment emulation extends the concept further to build an operating

system specific environment in which real-world protocol implementations are executed

directly within the simulator [7]. A key difference between simulation and emulation
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is that simulation runs in virtual time, and emulation runs in real time [2]. Discrete-

event computer simulators use events to advance time, meaning that the current time is

immediately advanced to the dispatch time of the next pending event. Emulating real

time is accomplished by modifying the base scheduler to not immediately advance to

the time of the next pending event, but rather to dispatch that event at the appropriate

real-time, by introducing a real-time delay [7]. In other words, events in real time are

synchronized to the real world wall clock. By running tests on a testbed built out of

real hardware, emulation allows experimenters to analyze applications that are affected

by lower-level influences such as device interrupt handling, CPU scheduling or Network

I/O [4]. Consequently, emulation makes integrated network experimentation possible.

Integrated network experimentation combines real and simulated elements in the same

experiment, each representing different portions of the topology, enabling new validation

techniques and larger experiments than possible with real elements alone [2, 9]. The

sections that follow describe simulation and emulation techniques.

2.2 Review of Network Experimentation Techniques

2.2.1 Simulation.

Various discrete-event network simulators exist in the networking research arena.

Examples include OMNeT++, NetSim and GNS3, to name a few. This section highlights

the most popular open source simulator, and the most popular proprietary simulator, ns-3

and OPNET respectively.

2.2.1.1 NS-3.

One of the most popular open source simulators, NS-3 [10], is widely used for research

and education on both IP and non-IP based networks. The majority of its users employ NS-

3 on wireless/IP simulations involving Wi-Fi, WiMAX or LTE, using protocols such as

OLSR, OSPF, BGP and AODV for IP-based applications. The NS-3 simulator is written

in C++ and Python [2], and features a modular, documented software core that allows

6



user modification and customization. Additionally, it allows software integration, where

users incorporate additional open source networking software, reducing the need to rewrite

simulation models. Finally, NS-3 features virtualization support using lightweight virtual

machines and protocol entities designed to be closer to real computers [5].

Because NS-3 is open source, everyone can contribute to it, customize it, find bugs and

fix them. Though feature rich, NS-3 is not easy to use due to its lack of a graphical user

interface (GUI). Users must type code to generate test scenarios, and understand concepts

of queuing theory to correctly interpret the obtained results [2].

2.2.1.2 OPNET.

OPNET [11] is a commercial network simulation product presented by OPNET

Technologies Inc. Its proprietary natures restricts its usage compared to NS-3. However,

OPNET has many features not present in NS-3. It has a GUI to design and debug simulation

scenarios, a fast discrete event simulation engine, various vendor device models to model

specific networking scenarios, object-oriented modeling, and a fully parallel simulation

kernel [2]. In addition to powerful visual or graphical support for users, parameters can be

adjusted, and experiments can be repeated easily through the GUI [5].

2.2.1.3 Simulation Summary.

To summarize, here are the advantages and disadvantages of using simulators for

networking experiments [4]:

Advantages

1. Simulation experiments are easy to set up and modify

2. Simulation gives the experimenter total control over the simulation and functionality

of each element.

3. Simulation is cost effective, requiring less time through ease of use, and either zero

cost (NS-3) or low-moderately expensive (OPNET).
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Disadvantages

1. Like NS-3, many simulators lack a built-in GUI, requiring users to write code.

2. Simulation realism is limited by model detail, which is probably the most important

disadvantage. Experiments requiring fine-grained measurements may give skewed

results or cannot be produced. For example, modeling the traffic and congestion

associated with Internet backbone links might not be possible if those effects are not

included within a simulation model.

3. Some proprietary simulators may be expensive, thus the popularity of NS-3 in

academia.

2.2.2 Emulation.

Just as there are numerous network simulators in use for network experimental

research, there is no shortage of network emulators. This section highlights Emulab,

Planetlab and VINI, the three most widely used emulation platforms.

2.2.2.1 Emulab.

Emulab is a platform that allows researchers to conduct integrated network experimen-

tation on networks and distributed systems. It is a public facility available without charge to

most researchers worldwide [9]. The environment integrates simulation, emulation and live

network experimentation into a single framework, providing experimental control without

sacrificing realism. These resources are available to researchers around the world free of

cost [4]. Although there are over two dozen sites around the world, the primary Emulab

installation is run by the Flux Research Group, part of the School of Computing at the

University of Utah, consisting of hundreds of nodes of various configurations connected

through rack switches [12]. Experimenters use a simple GUI to envoke an ns script to

automatically configure a physical topology within the Emulab testbed, consisting of vir-

tualized host names, IP Addresses, links and nodes [4]. Wide-area network (WAN) links
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are emulated within local-area network (LAN) environments by inserting a Dummynet

node between two physical nodes to enforce queue and bandwidth limitations [9]. Emulab

also contains simulation features that allow dynamic addition and removal of experimental

nodes, and changing link characteristics at specific time instances during experiments [4].

Emulab has been widely used in research involving Active Networks, Adaptive

Traffic Equalization, Cloud Computing, Databases, and many more, but lack of resources

is a primary concern since more experiments exist than available hardware [13, 14].

Resource shortage along with database software and hardware errors are some of Emulab’s

challenges [14].

2.2.2.2 PlanetLab.

PlanetLab is a networking and distributed systems research testbed, consisting of

thousands of geographically distributed nodes worldwide [15, 16]. Most machines are

hosted by research institutions, and all are connected to the internet, giving PlanetLab the

realism of having traffic flow through the actual Internet between nodes that peer with

the Internet’s regional and long haul backbones [16]. Accounts are limited to persons

affiliated with the universities and corporations that host PlanetLab nodes, along with a

limited number of free public services such as a proxy server system and a peer-to-peer

content distribution network.

PlanetLab is an overlay testbed, meaning that every application has a slice of its

resources. This Internet in a Slice (IIaS) construct allows node allocation in various

geographical locations [4]. Because all nodes are connected to the Internet, applications

experience congestion, failures and diverse link behaviors associated with traffic flowing

over the Internet backbone [16].

2.2.2.3 VINI.

VINI is a virtual network infrastructure that supports experiments involving simulta-

neous arbitrary network topologies on a shared physical infrastructure [17]. VINI is im-
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plemented on the Planetlab infrastructure, and it enables experiments that run real routing

software, creating real network conditions, controlling network events, and carrying real

traffic. Each node in VINI is a virtual machine (VM) that provides a realistic abstraction of

a real machine, being able to run various operating systems and modifying its kernel, de-

vice drivers, and other subsystems [4]. VINI uses XORP routing [18] and Click forwarding

[19] along with OpenVPN to build virtual topologies that allow arbitrary end hosts to direct

traffic through the VINI infrastructure. VINI also uses network address translation (NAT)

to ensure that traffic returns through VINI. Overall, VINI provides experimental traffic con-

trol by setting up routing tables on virtual routers, and directing traffic through the actual

Internet for realism.

2.2.2.4 Emulation Summary.

To summarize, here are the advantages and disadvantages of using emulators for

networking experiments [4]:

Advantages

1. Emulation provides greater realism and control through lower levels of abstraction

and real hardware. Experimenters are able to specify arbitrary topologies and control

traffic flow.

2. Emulation executes real software on nodes, as they are virtual machines.

3. Emulation uses simulation techniques to mimic components, such as simulating a

1Gbps link to appear as a 100Mbps link.

Disadvantages

1. Despite virtualization techniques, experimenters still face the possibility of the

number of experiments exceeding available resources.

2. Managing and maintaining emulation testbeds is an expensive endeavor. Human

operators may be required when remote troubleshooting is not possible.
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3. Because emulation provides realism, this reduces experimental controls and makes it

almost impossible it is almost always impossible to reproduce an exact scenario.

2.2.3 Other Methods.

2.2.3.1 Live Network Testing.

Live Network Testing is using existing Internet Links to run experiments. This method

is not as popular because of the inability to reproduce scenarios, unpredictable link qualities

and lack of control over intermediate routers and switches [4].

2.2.3.2 Everest.

Everest is a framework which aims to combine emulation and cloud infrastructure

into one testbed using Amazon EC2, providing realism and experimental control [4]. The

Everest infrastructure consists of a private cluster with a limited number of machines

operated by The ONE research group at Carnegie Mellon University. Their preliminary

research consists of performance tests comparisons between the private cluster and an

identical topology hosted in the Amazon EC2 cloud [4]. Everest’s advantages include

realism and control of network topology, VMs, routing protocols, physical infrastructure

in the private cluster, and the ability to integrate real hosts connected to the internet into

experiments. Disadvantages include lack of a GUI to configure experiment topologies,

difficulty in debugging routing parameters, and no access to Amazon’s underlying

infrastructure.

2.3 Experimental Resources

This section describes the resources employed while conducting the research. It

begins with an introduction to Amazon Web Services (AWS), which is the public cloud

infrastructure that is used to construct the testbed and conduct performance testing. AWS

is followed by a description of the Distributed Internet Traffic Generator (D-ITG), which

generates the traffic loads for the performance tests, and records experimental metrics.
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2.3.1 Amazon Web Services (AWS).

Amazon offers a variety of services under the umbrella of Amazon Web Services

(AWS). This research uses the Amazon Elastic Compute Cloud (Amazon EC2). Amazon

EC2 [20] provides resizable compute capacity in the cloud, making web-scale computing

easier for developers. This platform allows users to rent computing power to easily

scale up and down to meet business resource needs. Amazon caters to small and

medium businesses, allowing them to rapidly deploy applications and services ranging

from distributed applications to social networking applications to large scale cloud storage

systems [4]. Amazon makes computing resources available through EC2 instances, which

are virtual machines that allow users to specify instance types with various amounts of

virtual CPUs, memory, storage space, and processor. Additionally, Amazon defines a

metric called EC2 Compute Units (ECU) to provide a more standardized comparison

among instance types. Finally, users can choose the Amazon regional location of the

instance, Availability Zone within that region and the operating system to install on the

instance [20]. Some of the main advantages of Amazon EC2 include [4]:

1. Rapid Deployment: An EC2 instance can be configured in just a few minutes,

allowing users to rapidly create many VMs.

2. Superuser Privileges on Instances: Users have root access within the EC2 instances

to install software, modify kernel settings, or any of the low-level subcomponents.

3. Scalable Solutions: Businesses can build scalable solutions for their clients, ranging

from webhosting to billing services to social networking location check-ins.

Although the Amazon cloud has many benefits, it also has challenges. Users are

allowed to create instances in the cloud, but are not allowed to control the underlying

networking infrastructure that connects instances. This limits the administrative control

over setting up the network topology in the cloud testbed. Additionally, users cannot
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control the amount of bandwidth between nodes. Amazon does not publish performance

data regarding its underlying infrastructure, so users must trust that sufficient bandwidth

exists to support their networking scenario. The same is true regarding simulating or

emulating poor network links. Users may have the need to create a topology that includes

smaller and less reliable network links in order to test application performance in adverse

conditions. The cloud does not have a native way to simulate or emulate link capacities.

Here are some of the notable issues with Amazon EC2 [4]:

1. SLA Guarantees: SLA guarantees a monthly uptime percentage of at least 99.95

percent for Amazon EC2 and Amazon EBS within a region, but does not mention

any network performance guarantees.

2. No Access to Physical Infrastructure: Users are not allowed access to the

physical infrastructure, and Amazon has not made information about the physical

infrastructure public. Therefore, users must rely on Amazon’s virtualization and load

balancing techniques to manage the load on their data centers.

3. Outages: Since the Amazon cloud does not fall under the user’s administrative

control, users must rely on Amazon to resolve any outages to the cloud infrastructure.

4. Broadcast and Multicast Traffic: Amazon does not allow broadcast or multicast traffic

in the cloud. This may affect applications that rely on this form of communication.

2.3.2 Distributed Internet Traffic Generator (D-ITG).

In order to determine the suitability of the Amazon cloud as a DoD networking

testbed, cloud performance under various workloads must be considered. Networks carry

diverse traffic patterns with a mixture of protocols, so the workload generator must reflect

this diversity. The Distributed Internet Traffic Generator (D-ITG) is a platform capable

to produce packet level traffic that accurately replicates appropriate stochastic processes

for both Inter Departure Time (IDT) and Packet Size (PS) random values. These values
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can assume several distributions that include normal, Pareto, uniform, exponential and

Poisson, among others [21]. Additionally, D-ITG supports IPv4 and IPv6 traffic at the

network, transport and application layer. Finally, D-ITG supports Linux, Windows, OSX

and FreeBSD operating systems [21]. These capabilities plus its free and open source

nature makes D-ITG an ideal choice as a workload generator.

2.4 Research Contributions

This research contributes to the body of knowledge in the following two ways:

1. This research performs extensive cloud performance testing under various workload.

Experimental factors include Virtual Machine (VM) instance type, Amazon Avail-

ability Zones, traffic protocol, packet size and packet distribution. This research uses

performance metrics to determine if architectures constructed in the cloud perform

as well as architectures that run on traditional networks. If so, then cloud network

architectures will display the same expected behavior as traditional network archi-

tectures, allowing the construction of networking testbeds at potentially substantial

cost savings.

2. Since the Amazon cloud does not support broadcast or multicast traffic, distributed

applications face a challenge. Many distributed applications use broadcast or

multicast to communicate real-time information. In many cases, moving a distributed

application into a cloud computing environment demands the use of different

protocols. In the case study for developing a distributed network application in the

cloud, this research identifies a messaging framework for distributed applications in

the cloud, which overcomes the restriction on broadcast and multicast traffic.
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2.5 Conclusion

2.5.1 Summary of Simulation and Emulation Techniques.

Simulation and emulation are widely used network experimentation techniques.

Discrete-event simulators such as ns-3 and OPNET make experiments easy to set up,

modify, and control, but cannot provide the realism of emulation. Emulation platforms

such as Emulab, PlanetLab and VINI provide realism and greater experimental control, but

have limited resources, and experiments are not deterministic. The Everest project attempts

to address emulation shortfalls by leveraging the cloud. However, Everest has neither

integrated the cloud into its private infrastructure to address the resource shortfall, nor

conducted extensive cloud performance testing under different loads to assess the feasibility

of a testbed hosted entirely in the cloud.

2.5.2 Research Contributions Summary.

This research continues Everest’s efforts to create a cloud networking testbed by

conducting extensive performance testing under different loads. Additionally, it suggests

a framework for distributed applications to overcome the cloud’s policy of restricting

broadcast and multicast traffic. Together, it determines if and how integrated network

experimentation can be conducted entirely in the cloud to support various networking and

distributed application scenarios.
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III. Methodology

T
his chapter provides a methodology to evaluate cloud testbed performance. The

problem definition is presented, including the goals, objectives, and the approach

to achieving those goals. The sections that follow discuss the system boundaries, system

services, workloads, performance metrics, system parameters and factors, followed by the

evaluation technique and experimental design. The Data Interpretation section describes

the statistical method for comparing mean values between the baseline platform and each

of the four cloud platforms. Finally, the summary reviews the main points presented in the

chapter.

3.1 Problem Definition

3.1.1 Goals.

The goal of this work is to determine the feasibility of using the cloud to perform

integrated network experimentation. Specifically, the goal is to:

1. Determine the effect on performance of physical distance between VM instances.

2. Determine the difference in packet loss, round-trip time, jitter and throughput among

various Amazon cloud platforms that are emulating a local area network (LAN).

Compare this to a virtualized baseline platform located on a single host.

3.1.2 Hypothesis.

Figure 3.1 shows an illustration of this research’s hypothesis. The null hypothesis

is that the mean values for packet loss, delay, jitter and throughput for each of the four

cloud platforms are not statistically different than that of the baseline platform. The

alternate hypothesis is that the mean values for packet loss, delay, jitter and throughput

are statistically different than that of the baseline platform.

16



Figure 3.1: Hypothesis

3.1.3 Assumptions and Limitations.

Amazon does not publish performance metrics for the underlying hardware that

supports its cloud computing platform. This absence of information regarding inter-

region and intra-region link capacities, latency, and overhead associated with network

management and virtualization is a limitation of this research. Users only control the

creation of virtual machine (VM) instances, including the regional location of the VM,

but not the underlying hardware infrastructure itself. This research assumes that Amazon’s

policies for network management and load balancing provide a viable platform for the

desired testing.

3.1.4 Approach.

This research takes the following approach to achieving the stated goals and testing the

hypothesis. The baseline platform and the various cloud platforms are provided statistically

identical workloads. The baseline platform serves as a standard to which to compare the

performance of the cloud platforms. Differences in performance metrics are identified and

analyzed. The suitability of various platforms for integrated networking experimentation is

assessed. If differences are identified, suitable data transformation processes are developed,

if possible, to translate or normalize data from the emulated environment to be statistically

not different than baseline performance.
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3.2 System Boundaries

The system under test (SUT) is the network emulation environment. The component

under test (CUT) is the Amazon cloud. Figure 3.2 depicts the SUT and CUT.

Figure 3.2: System Under Test (SUT) and Component Under Test (CUT)

3.3 System Services

The system provides a network emulation service. Success is defined as the extent

to which the performance of the network emulation environment meets or exceeds

the performance of the baseline platform. If the emulation service is successful, its

performance will not be statistically less than that of the baseline platform. If the

performance is statistically worse than that of the baseline platform, then failure has

occurred.
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3.4 Workload Parameters

The workload for the system is the traffic presented to the SUT for transport.

Network traffic comes in many forms. Some examples include Internet traffic, distributed

applications, and virtual private networks. These traffic workloads are diverse in size,

quantity, and distribution. Additionally, the workload may change over time based

upon social behavior, technology, and many other considerations. It is imperative that

experimental workloads mimic these characteristics in order to create more realistic

scenarios for the SUT. The Distributed Internet Traffic Generator (D-ITG) generates

workloads for the SUT. D-ITG is capable of generating traffic based upon protocol, packet

size, payload and many other attributes. Additionally, the program is capable of measuring

many performance indicators, including one-way delay, round trip time, jitter, packet loss

and throughput [22]. The workload parameters include:

1. Packet Size - Packet size has an affect on network performance. For example,

at a constant rate of 1,000 packets per second, the throughput of a network link

that is transferring 512 Byte packets is expected to be higher than a network link

transporting 256 Byte packets, all else being equal.

2. Packet Arrival Distribution - The packet arrival distribution refers to the manner in

which transmission requests are sent to the system. Offered load arriving at a constant

rate as opposed to Poisson arrivals may have performance implications.

3. Traffic Protocol - Traffic containing the following protocols will be sent to the System

Under Test:

• TCP - Transmission Control Protocol (TCP) is a reliable transport layer

protocol that operates on top of the best effort Internet Protocol (IP) layer

protocol to facilitate host to host communication. To perform services such

as reliable transmission, error detection, flow control and congestion control,
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TCP requires additional overhead. Consequently, there is a trade off between

the benefits that these services provide and their associated performance costs.

• UDP - In contrast to TCP, the User Datagram Protocol (UDP) is an unreliable

transport layer protocol that operates on top of IP. It is meant to be a lightweight

protocol that does not include the overhead associated with TCP. Because UDP

has less overhead, its throughput performance should be better than TCP.

• ICMP - This experiment uses the Internet Control Message Protocol (ICMP) to

measure round-trip time (RTT) between two nodes.

4. Workload Generator Random Seed - The D-ITG software has nine unique seeds

available. These seeds are altered randomly to ensure that workloads presented to

the SUT are not identical among test runs.

3.5 System Parameters

The parameters discussed below affect the performance of the cloud testbed.

1. Operating System - All virtual machines run Linux Ubuntu.

2. Processor - All virtual machines run a 64 bit processor.

3. Number of Virtual CPUs - The number of virtual CPUs that a VM has varies by

instance type. Baseline VMs will have one virtual CPU.

4. Number of Amazon EC2 Compute Units (ECU) - ECUs are defined by Amazon

to make it easy to compare CPU capacity between different instance types. This

parameter does not apply to the baseline network.

5. Memory - The amount of memory available varies with VM instance type. Baseline

VMs have 1 GB of memory.
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6. Storage - VM storage capacity varies with VM instance type. Baseline VMs have

410 GB of storage.

7. Network Resource Reservation - Amazon makes network performance promises

based upon VM instance type that includes very low, low, moderate, high and 10

Gigabit. These promises are not included in the SLA, but they serve as a means of

comparing instance types. This parameter does not apply to the baseline network.

8. Amazon Region - The Amazon cloud consists of nine different regions across the

world, which are isolated from other regions. This research examines whether

network performance within one region differs from other regions. This parameter

does not apply to the baseline network.

9. Amazon Availability Zone - The assumption behind this parameter is that the

physical distance between hosts affects network performance. Within each region,

Amazon separates its networks into availability zones. Amazon does not publish

specific details regarding the underlying network infrastructure, but they do say that

virtual machine instances in different availability zones are in physically separate

locations. This parameter does not apply to the baseline network.

10. Time of Day - The key assumption regarding this parameter is that cloud datacenter

utilization is not evenly distributed throughout the day. This research attempts to

represent that by conducting experiments during certain time frames that correspond

to various utilization levels. This parameter does not apply to the baseline network.

11. Performance of Underlying Amazon Hardware - Amazon’s underlying hardware

provides the computational power in the cloud environment. Amazon does not

publish specific numbers regarding this infrastructure. However, this is a parameter

because its performance has an effect on the overall performance of the cloud

environment. For example, the range of available bandwidth between network
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nodes within the same availability zone, and between different availability zones

within a region may limit performance for a large distributed topology in the cloud.

This research assumes that Amazon’s underlying hardware can sufficiently support

integrated network experimentation.

12. Performance of Amazon Network Management/Virtualization Sofware - In addition

to the underlying hardware, Amazon’s network management and virtualization

software also plays a role. For example, the amount of virtual machines mapped to a

single physical node may affect network performance for cloud platforms relying on

this software. This research assumes that Amazon’s load balancing and virtualization

scheme can sufficiently support integrated network experimentation.

3.6 Performance Metrics

The following performance metrics are used to evaluate the performance of the SUT

for a given platform.

• Round-Trip Time - Round-trip time (RTT) is the length of time in milliseconds it

takes for a packet to be sent from source to destination, plus the time to receive

an acknowledgement. This metric captures transmission, propagation and queuing

delays present on the network between the source and destination nodes. RTT

considers only packets that are successfully delivered. The measurement is usually

determined using the Packet Internet Groper, or ping utility, which uses ICMP. This

metric provides insight into the quality of successful packet delivery.

• Packet Loss - Packet loss is the percentage of packets that do not successfully arrive

at their destination out of the total number of packets sent. This metric measures the

failure outcomes during transmission.

• Delay - This metric captures the end-to-end one-way delay for packets between

source and destination nodes. This metric is measured in milliseconds, and only

22



considers packets that are successfully delivered, providing insight into the stability

of packet delivery performance.

• Jitter - In this experiment, jitter is defined as the packet delay variation (PDV). RFC

3393 defines PDV as the difference in end-to-end one-way delay between selected

packets in a flow, ignoring lost packets. This metric only considers packets that

are successfully delivered, and provides further insight into the stability of packet

delivery performance.

• Throughput - One of the most common ways of measuring network performance is

by measuring throughput. Throughput is the rate at which messages are successfully

delivered over a communication channel. Therefore, throughput only considers

entire packets that successfully arrive at their destination. In this experiment,

throughput is measured in Megabits per second.

3.7 Factors

Appendix A describes the process used to choose experimental factors from the list

of experimental parameters. Table 3.1 shows the experimental factors used in this research

and their corresponding levels.

3.8 Evaluation Technique

This research uses direct measurement to evaluate the performance each Amazon

cloud platform. Four distinct cloud platforms are constructed along with a baseline

platform. D-ITG software is used to generate experiment traffic, and gather performance

metrics during the experiments. Sender and receiver VMs run D-ITG software. Results

from experimental runs in the cloud are validated against the results from the baseline

platform. The platforms are set up as follows:
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Table 3.1: Experimental Factors with Corresponding Levels

Factor Low Level Mid Level High Level

1. Instance Type M1.Medium M1.Large

2. Amazon Availability Zone Same AV Zone Different AV Zone

3. Traffic Protocol ICMP UDP TCP

4. Packet Size Distribution Constant Size Poisson Uniform

(Measured in Bytes) 512 Mean=512 Min=256, Max=4096

5. Packet Arrival Distribution Uniform Poisson Constant Rate

(Measured in Packets/sec) Min=256, Max=4096 Mean=1,000 1,000

• LAN Baseline - The baseline platform consists of two VMs on the same local host.

VMs are hosted on the same physical machine using virtualization software such as

VMWare. Each VM runs the D-ITG software, and sends traffic to the other VM as

shown in Figure 3.3.

Figure 3.3: Baseline Platform
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• Two VM Instances in the same Availability Zone - Figure 3.4 shows a cloud platform

with two VM instances within the same availability zone. Two of the four cloud

platforms use this construct, one with M1.Medium instances and one with M1.Large

instances. These platforms are compared to the LAN baseline platform.

Figure 3.4: Cloud VMs in Same Availability Zone

• VM Instances in Different Availability Zones - Figure 3.5 shows a cloud platform

with two VM instances located in different availability zones within the same region.

Two of the four cloud platforms use this construct, one with M1.Medium instances

and one with M1.Large instances. These platforms are also compared to the baseline

platform to capture the performance effects of geographical separation.

3.9 Experimental Design

To determine the factors, a Plackett-Burman [23] design is used to evaluate the effects

of each parameter. There are four workload parameters, and 12 system parameters, for a

total of 16 experimental parameters. However, only seven of them can be independently

varied, so there are seven potential experimental factors. Under these conditions, the
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Figure 3.5: Cloud VMs in Different Availability Zones

Plackett-Burman design requires 12 experimental runs for the screening process. The

ICMP tests are conducted using the PING utility, requiring a total of 30 experiments. For

the remaining experiments, the five most influential factors are considered. To evaluate the

interaction among all the factors, a full factorial design is used. There are five factors that

each have various levels. A full factorial design requires 2x2x3x3x3= 108 experiments.

Sufficiently small variance is expected with no more than five replications, resulting in a

total of 540 experiments. Therefore, the overall number of experiments including Plackett-

Burman, PING and all remaining experiments is 12+30+540= 582 experiments. Each

test runs for a 10 second time period. The random seed within the workload generation

software is changed before each run to ensure each is independent. Errors are assumed

to be normally distributed, and a 95 percent confidence interval is used because cloud

performance is expected to mimic baseline performance.

3.10 Data Interpretation

As part of the data analysis process, t-tests are run on the data to determine if a

difference of means exists. The null hypothesis for each experiment in this chapter is that
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the means are equal, and the alternative hypothesis is that they are not equal. Figure 3.6

shows a breakdown of the process to determine which hypothesis to accept. In instances

with values for the t-statistic that have an absolute value greater than 2.0 along with p-values

less than 0.05, there is a significant difference of means. Therefore, the null hypothesis is

rejected, and the alternative hypothesis is accepted. In instances with values for the t-

statistic that have an absolute value smaller than 2.0 along with p-values larger than 0.05,

there is no significant difference of means. Therefore, the null hypothesis is not rejected.

Figure 3.6: Statistical Data Analysis (reprinted from [1])

3.11 Methodology Summary

To determine if the cloud can suffice testbed for prototyping virtual networked

environment architectures, network performance in the cloud is considered. This research

measures the performance of four cloud platforms, and compares them to a baseline

platform. Cloud performance is expected to not be statistically less than baseline

performance. The factors that are expected to have the most impact on performance are

the Amazon Availability Zone of VMs, VM instance type, packet size, packet arrival

distribution and traffic protocol.
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IV. Data Analysis and Results

T
his chapter discusses the data from experimental runs, analyzing data gathered using

the PING utility, and workload traffic generated using the Distributed-Internet Traffic

Generator (D-ITG). Data presented in this chapter consists of calculated mean values

of six experimental replications. The D-ITG traffic workload data shows the calculated

mean values after six replications of each of the 18 unique traffic workload configurations.

Individual measurements from each experiment are found in the appendixes. Appendix B

shows the raw measurements across the baseline platform, and Appendix C shows the

raw measurements across each of the four cloud platforms. When evaluating network

performance, several metrics are considered:

1. Bandwidth - Bandwidth is the maximum amount of raw data that can be transmitted

per second across a network link. Due to the nature of virtualization and the unknown

details regarding Amazon’s underlying infrastructure, this study is unable to calculate

the amount of available bandwidth between two virtual machines. Therefore,

bandwidth is not a metric used.

2. Latency - Latency is the minimum time a network needs to send the smallest possible

amount of data. This value captures all processing, queuing, transmission and

propagation delays present on the network. Unlike network delay, this does not

take traffic workload into account. Therefore, latency describes travel time strictly

associated with traversing the network under ideal conditions. This study uses the

PING utility to capture the round-trip time (RTT) as a metric.

3. Packet Loss - Packet Loss is the percentage of packets that are not successfully

delivered from source to destination, out of the total number of packets transmitted.
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This includes packets that are dropped, lost, or corrupted along the way. This study

uses Packet Loss as a metric for experiments involving traffic workload.

4. Delay - While the PING utility captures the latency involved with sending the

smallest possible amount of data, it does not describe network performance under

heavy traffic workload. Network Delay is a metric used by the study to capture the

processing, queuing, transmission and propagation delays during traffic workload.

5. Jitter - Jitter is the packet delay variation (PDV). RFC 3393 defines PDV as the

difference in end-to-end one-way delay between selected packets in a flow, ignoring

lost packets. This study uses Jitter as a metric to capture PDV during traffic workload.

6. Throughput - Throughput is the actual data that is transmitted per second, excluding

the necessary overhead used to send that data. throughput depends on many other

factors such as the amount of bandwidth, latency, payload size, packet size, number

of intermediate devices between source and destination, an others. This study uses

Throughput as a metric for experiments involving traffic workload.

The rest of the chapter is organized as follows. The discussion begins with an

analysis of the data captured by the PING utility. The PING experiments are used to

get a general idea of underlying network performance, such as identifying whether any

inherent problems appear on the surface of the network before introducing network traffic

with realistic payloads. Next, traffic workload data is analyzed. The traffic workload

experiments go into further detail by introducing various patterns of traffic, representing

the bulk of performance analysis. The chapter concludes with a summary of findings,

revisiting of investigative questions, and recommendations for future research.

4.1 PING Data Analysis

This section presents the results of running the PING utility between two hosts on

the baseline network, as well as two hosts within each of the four cloud computing
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platforms. PING times correlate very roughly with the amount of distance between source

and destination machines. A machine can PING itself very quickly, but it takes longer

to PING other machines on the network. This time increases as distance increases. For

example, a PING cannot exceed the speed of light. The distance between New York

and Los Angeles is roughly 2,462 miles, which can be traversed by light in roughly 13

milliseconds one-way. A PING utility that travels this distance should not report a round-

trip time (RTT) shorter than 26 milliseconds. Here are a few examples of latency sensitive

systems that have performance thresholds:

1. Satellite Telephony - Geosynchronous telecom satellites are at least 71,000 kilome-

ters from transmitter to receiver, and the resulting latency is roughly 473 milliseconds

[24]. Regardless of available bandwidth, this can be very noticeable, and affect the

quality of the satellite phone service.

2. World Wide Web - When delays are less than 100 milliseconds, Internet users feel

that responses are instant from click to response [25].

3. Online Gaming - Real-time, multi-player games may use the internet or a local area

network (LAN) to create a shared environment between two or more users. The

maximum latency tolerance varies from game to game, but in general, first-person

shooter games require lower latency for the best experience, while a turn-based game

such as spades can tolerate higher latency [26].

The systems listed above are a subset of experiences that are affected by network

latency. In order to accommodate a diverse range of systems that might appear on a

network, latency should be as low as possible. Figure 4.1 shows the average latency values

captured by the PING utility for the baseline platform and all four cloud platforms. PING

statistics are summarized below:
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1. Baseline Platform - The baseline platform has an average latency of 0.26 millisec-

onds, and 0 percent packet loss.

2. Cloud Platform 1 - Cloud Platform 1 has an average latency of 0.62 milliseconds,

and 0 percent packet loss.

3. Cloud Platform 2 - Cloud Platform 2 has an average latency of 0.52 milliseconds,

and 0 percent packet loss.

4. Cloud Platform 3 - Cloud Platform 3 has an average latency of 1.25 milliseconds,

and 0 percent packet loss.

5. Cloud Platform 4 - Cloud Platform 4 has an average latency of 1.22 milliseconds,

and 0 percent packet loss.

Figure 4.2 shows an example of interpreting the t-test results, comparing PING data

between the baseline platform and Cloud Platform 1. The t-statistic of -22.6 indicates a

higher absolute value than 2.0, and the p-value is less than 0.001, which indicates that

there is a statistical difference. Therefore, the null hypothesis is rejected in favor of the

alternative hypothesis. The 95 percent confidence interval for the mean on the baseline

platform is 0.2330 through 0.2827. The 95 percent confidence interval for Cloud Platform

1 is 0.5903 through 0.6400. Notice that these confidence intervals do not overlap. The

box plot on the right shows a visual depiction of the data, clearly showing no overlap of

the confidence intervals. This is always the case when we see t-statistics with a larger

absolute value than 2.0, and a p-value less than 0.05. In cases where the absolute value of

the t-statistic is less than 2.0 and the p-value is greater than 0.05, the 95 percent confidence

intervals overlap, and the null hypothesis cannot be rejected.

The high t-statistic values and low p-values in all cases indicate that the difference

in the average latency values are statistically significant. Therefore, the null hypothesis
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Figure 4.1: PING Results

Figure 4.2: PING Results: Baseline vs Cloud 1

is rejected and the alternative hypothesis is accepted for latency performance. Since the

baseline platform consists of two virtual machines on the same host, its lower level of
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latency compared to all cloud platforms makes sense. It also makes sense that Cloud

Platforms 1 and 2, which have virtual machines located within the same availability

zone, have lower latency numbers than Cloud Platforms 3 and 4, which have virtual

machines located in different availability zones. These numbers illustrate the affect that

physical distance has on network latency. Although each cloud platform displays higher

network latency than the baseline network, all latency values are well within any reasonable

threshold. Therefore, there are no symptoms on the surface of the cloud network to suggest

performance issues.

4.2 Traffic Workload Data Analysis

Workload tests provide greater insight to network performance by introducing

significant traffic payloads across the network. This section conducts a side-by-side

comparison of performance data between the baseline network and each of the cloud

platforms. For each experimental run, each platform experienced statistically equivalent

traffic workload, allowing for fair performance comparison. Figure 4.3 shows the 18 traffic

workload configurations. Each configuration has a standard traffic pattern to provide a

means for comparison across platforms. For example, Configuration 1 consists of traffic

that has 512 byte packets, flowing at a constant rate of 1,000 packets per second using

the TCP protocol. This is standard across all four cloud platforms and the baseline

platform. Notice that we have only captured three of the five experimental factors at this

point. The other two experimental factors, virtual machine instance type and availability

zone status, are captured within the construct of the cloud platforms themselves. Four

separate cloud platforms exist because we have two remaining factors that each have two

levels, accounting for all possible combinations. This construct completes the full factorial

experimental design.
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Figure 4.3: Traffic Workload Configurations

4.2.1 Packet Loss.

Figures 4.4, 4.5, 4.6 and 4.7 show the mean packet loss values for the baseline platform

compared to cloud platforms 1, 2, 3 and 4 respectively. Cloud Platforms 2 and 4 are the

only platforms that show any packet loss. These platforms are different than other cloud

platforms in the sense that they both consist of M1.Large instance types. In both cases,

t-statistic values with absolute values less than 2.0 coupled with p-values greater than 0.05

indicate a lack of statistical significance.

4.2.2 Delay.

Figures 4.8, 4.9, 4.10 and 4.11 show the mean delay values for all platforms under

the 18 unique traffic workload configurations. Traffic workload configuration 14 is the

only instance where baseline platform performance exceeds cloud platform performance.

Results from 95 percent confidence intervals show that Cloud performance exceeds

baseline performance for each of the remaining 17 configurations. In all cases, each cloud
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Figure 4.4: Packet Loss:Baseline vs Cloud Platform 1

platform shows delays less than 90 ms, meeting the acceptability threshold for a wide range

of applications.

4.2.3 Jitter.

Figures 4.12, 4.13, 4.14 and 4.15 show the mean jitter values for all platforms under

the 18 unique traffic workload configurations. This is the only metric where 95 percent

confidence intervals show that the baseline platform’s performance slightly exceeds that of

three of the cloud platforms. However, each cloud platform produced jitter values less than

1 ms, which is acceptable for most applications.
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Figure 4.5: Packet Loss:Baseline vs Cloud Platform 2

4.2.4 Throughput.

Figures 4.16, 4.17, 4.18 and 4.19 show the mean throughput values for all platforms

under the 18 unique traffic workload configurations. In every case, 95 percent confidence

intervals show that cloud platforms produced higher throughput than the baseline platform.

This is likely attributed to robustness of the cloud’s underlying infrastructure, compared

to running two virtual machines on a single personal computer. These values suggest that

throughput performance for each cloud platform exceeds that of the baseline platform.
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Figure 4.6: Packet Loss:Baseline vs Cloud Platform 3

4.3 Summary of Findings

4.3.1 Results Summary.

4.3.1.1 PING Data.

Regarding network latency as measured by the PING utility, 95 percent confidence

intervals indicate that there is a difference between the baseline platform and each of the

cloud platforms. This illustrates the effect of physical distance on network performance.

PINGs travel a smaller distance when virtual machines are located within the same host,

and round-trip time increases as physical distance increases. This is further illustrated

by the higher latency observed in cloud platforms that are in different availability zones.
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Figure 4.7: Packet Loss:Baseline vs Cloud Platform 4

However, latency values for all cloud platforms are small enough to be acceptable to a wide

range of applications.

4.3.1.2 Packet Loss.

For packet loss, 95 percent confidence intervals indicate that there is no difference

between the baseline platform and each of the cloud platforms. Since these confidence

intervals cannot exclude a mean value of zero percent packet loss, they are acceptable for

a wide range of applications. Therefore, network architectures constructed in the cloud

are expected to display packet loss performance similar to that of traditional network

architectures.
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Figure 4.8: Delay:Baseline vs Cloud Platform 1

4.3.1.3 Delay.

Results show that 95 percent confidence intervals indicate a difference between the

baseline platform and each of the cloud platforms for all 18 traffic workload configurations.

Configuration number 14 is the only instance where baseline platform performance exceeds

cloud performance. In each of the other 17 configurations, cloud performance exceeds

baseline performance. All delay measurements observed in the cloud were less than 90

milliseconds, which is acceptable for a wide range of applications. Therefore, network

architectures constructed in the cloud are expected to display delay performance similar to

that of traditional network architectures.
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Figure 4.9: Delay:Baseline vs Cloud Platform 2

4.3.1.4 Jitter.

Results for jitter performance are not as conclusive as other metrics. For example,

out of 18 traffic workload configurations, 95 percent confidence intervals show better

performance for Cloud Platform 1 in five instances, better baseline performance in four

instances, and no statistical difference in the other nine. All other cloud platforms show

slightly more instances where baseline performance exceeds cloud performance. In all

cases, cloud platforms show jitter values that are less than one millisecond, which is

acceptable for a wide range of applications. Therefore, network architectures constructed

in the cloud are expected to display jitter performance similar to that of traditional network

architectures.
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Figure 4.10: Delay:Baseline vs Cloud Platform 3

4.3.1.5 Throughput.

Regarding throughput, 95 percent confidence intervals show that all cloud platforms

achieved higher throughput than the baseline platform under the statistically equivalent

workload in all 18 configurations. This is likely attributed to the larger amount of

resources available in the cloud to power the virtual machines and pass traffic between

them. Therefore, there is no evidence that network architectures constructed in the cloud

would not mimic the performance of networks outside of the cloud.

4.3.2 Scope of Inference.

This is a random experiment, therefore a causal link between baseline platform and

cloud platform performance can be validly inferred. Additionally, the Amazon region is
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Figure 4.11: Delay:Baseline vs Cloud Platform 4

selected randomly. Therefore, inference can be made to apply these results to other Amazon

regions.
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Figure 4.12: Jitter:Baseline vs Cloud Platform 1
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Figure 4.13: Jitter:Baseline vs Cloud Platform 2
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Figure 4.14: Jitter:Baseline vs Cloud Platform 3
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Figure 4.15: Jitter:Baseline vs Cloud Platform 4
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Figure 4.16: Throughput:Baseline vs Cloud Platform 1
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Figure 4.17: Throughput:Baseline vs Cloud Platform 2
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Figure 4.18: Throughput:Baseline vs Cloud Platform 3

49



Figure 4.19: Throughput:Baseline vs Cloud Platform 4
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V. Distributed Network Application in the Cloud Case Study

T
his chapter describes the involvement of this research in a case study to build

a distributed network application in the cloud. The discussion begins with a

background introduction to the case study, before introducing ZeroMQ, the tool used to

accomplish the task. It then describes the particular messaging framework within ZeroMQ

used to modify the distributed network application to operate in a cloud environment before

presenting results.

5.1 Introduction to the Case Study

Involvement in the Distributed Network Application in the Cloud case study is part

of a larger data analysis effort. Boeing, in conjunction with Morgan State University, is

currently in the process of conducting a data analysis experiment on flight simulation data.

They aim to receive a capture of real-time flight simulation data that includes time-stamped

position updates for each individual node as well as each node’s perception about the

location of every other node. This allows an analysis of the difference between truth data,

which is the location that each node reports as its true location, and each node’s calculated

world picture after piecing together updates from all other nodes. Due to network latency,

dropped update packets and other factors common to distributed applications, differences

are likely to be present.

One of the issues faced by the data analysis effort is generating and receiving the

flight data to be analyzed. In lieu of using more expensive solutions, such as having real

air planes or building a flight simulation test range to generate position data to transfer to

their networks, the data analysis team chose to leverage the public cloud as a testbed for

generating and transferring the data. This research contributes to the case study by building
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the distributed application framework in the cloud, and extracting the data from the cloud

to the Boeing and Morgan State networks for analysis.

5.2 ZeroMQ

The Open Extensible Architecture for the Analysis and Generation of Linked

Simulations (OpenEaagles) is a simulation framework developed and maintained by the

U.S. Air Force to support a multitude of simulation activities [27]. OpenEaagles has been

used by the U.S. Air Force to transfer real-time flight simulation data on a number of

projects. Currently, OpenEaagles uses UDP broacast packets to distribute information

between network nodes. Due to Amazon’s restriction on broadcast traffic, the application

demands modification in order to operate in the cloud. An alternative option is needed that

accomplishes the task of sending position updates to all nodes without sending broadcast

packets. The framework known as ZeroMQ meets this need. ZeroMQ uses sockets to

create a messaging framework that can transport any type of data between other ZeroMQ

nodes [28]. ZeroMQ is an open source framework that supports multiple operating system

platforms and multiple programming languages. Additionally, it features sockets that

support unicast and multicast transports. These sockets express certain message patterns

that are not necessarily one-to-one [29]. These message patterns are what allows ZeroMQ

to send unicast packets and have them distributed in a broadcast or multicast fashion, thus

eliminating the need to actually send broadcast or multicast packets.

5.3 Publish-Subscribe Messaging Framework

ZeroMQ has several messaging patterns available depending on user needs. The

Publish-Subscribe pattern aims to create highly scalable group messaging by enabling

users to send large volumes of data rapidly to many recipients. One of the ways that

ZeroMQ achieves that scalability is by not having recipients talk back to senders. In other

words, subscribers do not connect to the publisher at all, but rather a multicast group on
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a network switch, to which the publisher sends its messages. Publish-Subscribe is like a

radio broadcast; the subscriber misses everything that happens prior to subscribing, and the

amount of information received depends on the quality of reception [28]. While removing

back-chatter simplifies message flow, it also removes the ability to coordinate between

senders and receivers. This dynamic creates the following challenges [29]:

1. Publishers cannot detect whether subscribers are successfully connected, both on

initial connections and re-connections after network failures.

2. Subscribers cannot coordinate with publishers regarding the message sending rate,

causing subscribers to either keep up or lose messages.

3. Publishers cannot detect when subscribers have disappeared due to complications

such as processes crashing, network outages, etc.

4. If subscribers join late or drop off, they miss messages sent by the publisher while

not online.

5. If subscribers fetch messages too slowly, queues can build up and overflow.

6. If subscribers crash and restart, they lose the data that was already received.

The challenges listed above make this pattern unusable for applications that demand

reliable multicast. However, some real-time distributed applications can tolerate almost

reliable multicast due to their nature. For example, if a real-time position update is lost by

the network, then re-transmitted, the position information is likely too outdated to be useful

to the receiver once it finally arrives. It is better for the receiver in that case to wait for the

next position update, which will follow shortly afterwards, due to the real-time nature of

the updates.
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5.4 Proof of Concept

Rather than immediately modifying the OpenEaagles source code to use ZeroMQ as

a method of transport, a proof of concept experiment answers the functionality question

with minimal programming requirements. The proof of concept consists of the following

elements:

1. Virtual Machine Instances in the Cloud - Three virtual machine instances in the

Amazon cloud serves as a publisher, subscriber, and proxy for the experiment.

2. Host on Boeing Network - This experiment uses a machine on the Boeing network

as the host that receives data from the cloud.

3. Execution Programs - In lieu of writing a program that simulates actual flight

position data, the experiment uses a simple weather update server construct using

C++ programs. The publisher program generates random weather data that includes

temperatures for various zipcodes in a continuous loop. The subscriber program

chooses a zipcode and the number of weather updates to process for that zipcode.

After receiving the required amount of weather updates from the publisher, the

subscriber calculates the average temperature for that zipcode and displays the result

to the user. Since the publisher and subscriber are not directly connected, a proxy

program is needed. The proxy program subscribes to everything from the publisher

on one socket, and publishes the same data on another socket. This allows subscribers

to to the proxy for information. The benefit to this construct is that a single proxy

can perform this function for multiple publishers and subscribers, without any of the

subscribers needing to have knowledge of any of the publishers. Only the proxy’s

publish and subscribe socket addresses need to be known.
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5.4.1 Publisher Program.

Figure 5.1 shows the applicable portion of the weather update publisher program. The

publisher begins by preparing the context. The public IP address of the proxy machine

in the Amazon cloud is 54.226.39.182. The publisher reaches out to this machine and

establishes a connection to the proxy on port 5556. Although the publisher is establishing

the connection, this socket is used to allow the proxy to subscribe to the publisher. This

is made possible because under the ZeroMQ infrastructure, the direction in which a

connection is established is not connected to the direction of traffic flow. For example,

in typical web server communication, the web client establishes a connection to the server

before traffic begins to flow. Web servers do not initiate connections to clients in order

to send them data. ZeroMQ removes this restriction, allowing the server to connect to the

proxy, while clients also connect to the same proxy. The proxy relays traffic back and forth.

Therefore, as long as all entities can connect to the proxy, which has a public IP address,

traffic can flow from any publisher to any subscriber.

After establishing the connection to the proxy, the publisher needs to actually publish

data for subscribers. The publisher does this by binding weather.ipc in the next line of

code. The publisher then uses a random number generator to generate zipcode, temperature

and relative humidity data, and prepares messages to send to subscribers. This construct

simulates a broadcast or multicast messaging environment because although all data gets

published, subscribers choose the data to which to subscribe, which can be all or a subset

of the data.

5.4.2 Subscriber Program.

Figure 5.2 shows the applicable portion of the weather update subscriber program.

The program first connects to the same proxy address of 54.226.39.182, but on port 5559

rather than port 5556. This establishes a subscription to data relayed from the publisher

via the proxy. The program defaults to collecting data for New York City zipcode 10001.
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Figure 5.1: Weather Update Publisher

Rather than processing temperature and relative humidity updates for zipcode 10001, the

program only performs calculations on the temperature updates. After receiving 10 updates

for zipcode 10001, the program calculates the average temperature and reports it to the user

on the screen.

5.4.3 Proxy Program.

Figure 5.3 shows the applicable portion of the weather update proxy program. The

program begins with the socket connection to the publisher. ZeroMQ uses a connect and

bind construct. Since the publisher connects to the proxy, the proxy then binds to port
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Figure 5.2: Weather Update Subscriber

5556 on its local machine. This connection establishes a subscription to the data sent

by the publisher. The proxy follows the same procedure to for the subscriber, binding to

port 5559 in order to publish data received from the publisher out to subscribers. The

proxy subscribes to everything from the publisher, and subscribers can choose to filter out

unwanted data. The proxy then executes the process of receiving messages on the front

end, and relaying those messages out of the back end.
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Figure 5.3: Weather Update Proxy

5.5 Case Study Results

After running the three programs on the machines in the cloud, the subscriber was able

to receive data from the publisher via the proxy machine. Creating two similar publisher

and corresponding subscriber programs expanded the architecture to three publishers and

three subscribers that all connect to one proxy machine. All subscribes were still able to

receive updates from publishers. Additionally, the Boeing host machine was able to run the

subscriber program and receive updates from the cloud. This proof of concept experiment

shows that real-time distributed applications can be modified if necessary to operate within
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the restrictions of the cloud environment. Incorporating ZeroMQ’s Publisher-Subscriber

messaging framework into the the OpenEaagles platform serves Boeing and Morgan State

University’s data analysis needs.
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VI. Conclusion

6.1 Investigative Questions

1. Question What techniques do researchers use to conduct network experimentation?

Answer Researchers use simulation, emulation and integrated network experimenta-

tion techniques to conduct network experimentation.

2. Question What tools are used to implement these techniques?

Answer Simulation tools such as OMNet++, NetSim, GNS3, NS-3 and OPNET

are popular choices to run simulations. Tools such as Emulab, Planetlab and VINI

are popular emulation platform choices. The public cloud can also be leveraged to

combine simulation and emulation techniques.

3. Question What effect on cloud testbed performance does physical distance between

virtual machine (VM) instances have?

Answer Physical distance between virtual machines increases network latency. The

baseline platform has the lowest amount of latency because both virtual machines

reside on the same host. Cloud Configurations 1 and 2 have slightly higher latency

because they consists of virtual machines that are in the same availability zone,

but not necessarily on the same host. Cloud Configurations 3 and 4 have the

highest latency values because they consist of virtual machines that reside in different

availability zones. Ultimately, all cloud platforms exhibit latency values that are well

within production network expectations.

4. Question What is the difference in round-trip time, packet loss, delay, jitter and

throughput among various Amazon cloud platforms, compared to the baseline

platform?
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Answer Round-trip time for all cloud platforms are higher than the baseline network,

although they are well within production network expectations. Packet loss and delay

values are all comparable to baseline platform performance. Jitter values for cloud

platforms are either comparable to or slightly below baseline performance values,

but all well within production network expectations. Throughput values for all cloud

platforms exceed baseline performance.

5. Question Can the public cloud serve as a testbed to perform integrated network

experimentation?

Answer Yes. Cloud testbed performance metrics show that network performance

in a cloud environment mimics the performance of networks constructed outside

of the cloud. Therefore, the cloud is a suitable for conducting integrated network

experimentation.

6.2 Future Research

The next step toward building a DoD testbed in the cloud is to incorporate Wide Area

Network (WAN) emulation techniques to simulate various types of network links such as

the low bandwidth, high latency satellite links found on Department of Defense (DoD)

tactical networks. Currently, the cloud allows users to create virtual machine instances in

the cloud, but the link capacities between those machines equate to whatever the cloud

infrastructure can deliver. There is no native capability in the cloud to emulate links that

make performance worse than what the cloud is capable of delivering. Implementing this

capability will allow users to create topologies that mimic the exact topology of production

networks, adding more realism to experiments.

6.3 Final Thoughts

Experimental metrics and statistical analysis show that cloud performance mimics

expected performance of any network. Additionally, ZeroMQ provides a framework
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to overcome cloud policy restrictions, and allow distributed applications to send group

messages without using broadcast or multicast packets. Leveraging the resources of the

public cloud provides the necessary realism without the need to purchase or maintain a

separate network or emulation testbed. Therefore, the public cloud infrastructure can serve

as testbed for performing integrated network experimentation.
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Appendix A:

Pilot Experiments

T
his appendix describes the process of using a Plackett-Burman design to narrow

down the 16 parameters in the study to a list of five experimental factors. The

discussion begins with an introduction to parameters and experimental factors, followed by

a description of the theory behind the Plackett-Burman design. After listing the required

materials and equipment, the discussion proceeds with an outline of the procedures and

process for completing the necessary experiments. Finally, the discussion concludes with

a list of the resulting experimental factors.

A.1 Introduction

System parameters affect the performance of the System Under Test(SUT). Section

3.4 describes four workload parameters, and Section 3.6 describes 12 system parameters

for a total of 16 experimental parameters. The parameters with the greatest effect on

performance are chosen to be experimental factors. Each factor is assigned factor levels.

For example, the levels for the traffic protocol factor are TCP, UDP and ICMP. As these

factor levels change, they may produce measurable effects on performance metrics such as

throughput and packet loss. This research uses a complete factorial design in order to test

every possible combination at all factor levels. This research also assumes that a sufficiently

small variance is observed with five repetitions of each experiment. If all 16 parameters in

this study were chosen as experimental factors, even with only two levels per factor, and five

repetitions, the study would require 2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x5=327,680

experiments. This is clearly an unreasonable amount of experiments. In order to limit

the number of experiments required, parameters must be narrowed down to a reasonable
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number of experimental factors. This study uses the Plackett-Burman design to assist with

making those choices.

A.2 Theory

Plackett-Burman designs are experimental designs presented in 1946 by Robin L.

Plackett and J. P. Burman for investigating the dependence of some measured quantity on

a number of experimental factors [23]. Although complete factorial designs accomplish

this task, the number of required experiments in a complete factorial design increases

exponentially as the number of factors increase. Therefore, the idea was to find smaller

designs that identify the main effects of each factor using a limited number of experiments.

This study begins by considering each parameter that can be independently changed by the

user as a potential factor, totaling seven potential factors. The study then uses a Plackett-

Burman design where each potential factor has two levels, a +1 level and a -1 level. For

example, traffic protocol has TCP as the +1 level, and UDP as the -1 level during the

Plackett-Burman tests. The Plackett-Burman design for the case of two levels per factor

uses the method found in 1933 by Raymond Paley for generating orthogonal matrices

whose elements are either 1 or -1. These matrices of size N, where N is a multiple of four

but not a power of two, shows the pattern in which to vary the factor levels in the experiment

[30]. In this case, the experiment has seven parameters that can be independently varied,

requiring a matrix of size 12. The matrix is of size 12 because 12 is the smallest multiple of

four that is greater than seven, but not also a power of two. The number eight is a multiple

of four, but since it is a power of two, it is ineligible under the Plackett-Burman design. The

Plackett-Burman design assumes that interactions between the factors are negligible. When

interactions between factors are not negligible, they are confounded with the main effects,

preventing one from distinguishing between certain interactions and certain main effects

[31]. Since this study uses the Plackett-Burman design as a screening mechanism only,

confounding is not considered to be a problem. The Plackett-Burman design identifies the
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most influential factors in any way, allowing for further investigation of identified factors

during the complete factorial design.

A.3 Materials and Equipment

In order to conduct the Plackett-Burman screening experiments, the following

materials and equipment are needed:

1. Amazon Cloud VM Instances - Instances must be configured in the cloud according

to the factor levels specified by the Plackett-Burman design. For example, the

Instance Type factor has a +1 level of M1.Large and a -1 level of T1.Micro. Other

parameters are set during the creation of instances to include the Amazon Region

and Availability Zone. Each of the VMs run Ubuntu Server 13.04 with a 64 bit 3

GHz processor. This experiment uses the T1.Micro and M1.Large instances. The

T1.Micro instances have 0.615 GB of memory, Amazon Elastic Block Store (EBS)

only external storage, one virtual CPU and a very low resource reservation on the

Amazon cloud network. The M1.Large instances have 15 GB of memory, 420 GB

of native storage, four virtual CPUs and a high resource reservation on the Amazon

cloud network. The reasoning behind the drastic differences in these two factor levels

is to clearly see if the instance type has an effect on performance. Other factor levels

are constructed in a similar fashion.

2. Distributed Internet Traffic Generator (D-ITG) Software - Section 2.3.2 describes D-

ITG software. D-ITG software must be installed on each VM instance to generate

and receive traffic workload for the experiments.

3. List of Parameters - Section 3.4 provides a list of workload parameters, and Section

3.6 provides a list of experimental parameters along with their descriptions. The

goal of the Plackett-Burman design is to narrow this list to the most influential

experimental factors, which will assume various factor levels during the complete

65



factorial experiments. Parameters that are not directly alterable by the user are not

considered as candidates to become experimental factors. Therefore, this studying

considers the following candidates:

(a) Availability Zone - When creating an instance in the Amazon Cloud, users are

given the option to choose an Availability Zone for that instance.

(b) Packet Size Distribution - The D-ITG software allows users to set the packet

size distribution.

(c) Packet Arrival Distribution - The D-ITG software allows users to set the packet

arrival distribution.

(d) Traffic Protocol - The D-ITG software allows users to set the traffic protocol.

(e) Amazon Region - When creating an instance in the Amazon Cloud, users are

given the option to choose an Amazon Regional location for that instance.

(f) Time of Day - This is the time of day that the experiment is conducted in Eastern

Standard Time.

(g) Instance Type - When creating an instance in the Amazon Cloud, users are

given the option to choose an instance type.

4. Data Input Spreadsheet Software - Software such as Microsoft Excel is used to

capture the results in spreadsheet form and perform mathematical operations such

as calculating averages.

A.4 Procedures and Process

After specifying a matrix of size 12 and seven candidates for the Plackett-Burman

design, the R statistical program generates the matrix shown in Figure A.1. This matrix

is used to create a spreadsheet that assigns each of the seven candidates to a letter from

A to G, before filling in their factor levels as shown in Figure A.2. In order to setup each
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experiment, each of the 12 configuration numbers represents the 12 experiments required

under the Plackett-Burman design. For example, the first experimental run consists of

T1. Micro VMs that are located in the Tokyo region, but in different Availability Zones,

with traffic that has a packet size of 4096 at a constant rate of 1,000 packets per second,

TCP protocol, and the experiment needs to be run between 11am and 2pm Eastern time.

Following this process of setting up each configuration is all that is necessary to distinguish

the effects of each candidate on performance metrics. Each experiment runs for 10 seconds.

After designating one VM as the D-ITG sender and the other the D-ITG receiver and

and configuring the traffic parameters, the results of each experimental run will be saved

to the log files specified. Figure B.3 shows an example of the commands used in D-

ITG. For example, the sender command specifies a destination IP address of 10.0.0.2,

and tells the local sender machine to create a log file named sender.log to capture the

results. Additionally, it tells the remote receiver to create a log file named receiver.log

to capture the results received on the far end. The results captured in these two files should

be nearly identical. The command also specifies a round-trip time meter versus one way,

a duration of 10,000 milliseconds, which is equal to 10 seconds, TCP protocol, constant

packet size of 4096 and a constant packet distribution of 1,000 packets per second. Using

these commands in combination with the choices made while creating the VMs in the

Amazon cloud allows for the construction of each of the 12 unique configurations for the

Placket-Burman design.

A.5 Results

Figure A.4 shows the values of the metrics that were captured after each of the 12

configuration runs. The metrics are Throughput, Packet Loss, Delay and Jitter. After

capturing these values, the next step is to return to the factor matrix. Figure A.5 shows

the candidates and their factor levels of +1 and -1 depending on the configuration. The
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Figure A.1: Plackett-Burman Matrix for 7 Factors

candidate labeled I is the mean value, which is why it has all +1 values in the matrix.

To calculate the sum of the throughput attributed to candidate A, multiply the factor

level (configuration one’s factor level for candidate A is +1) by the measured Throughput

(configuration one’s Throughput is 20.321874307). Perform this calculation for each of the

configurations down candidate A’s column, then sum the values to get a sum Throughput of

-257.379727. Dividing this value by 12, the number of experimental runs, gives the effect

of -21.4483106. For the Plackett-Burman design, the sign of the number is meaningless.

Only the magnitude is considered for the effect, and larger magnitudes equal greater effects.

Repeating this process for each of the remaining candidates yields the results shown in

Figure A.5. The color code in Figure A.5 highlights the candidate with the largest effect

for a particular metric in green. The second largest effect per metric is blue, followed by

brown and peach. Since candidate C, Packet Arrival Distribution had the largest effect on

both Throughput and Delay, it was the first candidate chosen as an experimental factor. The

remaining factors were chosen because their effects exceeded the ones not chosen.
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Figure A.2: Candidates and Factor Levels

Figure A.3: D-ITG Commands
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Figure A.4: Measured Values

A.6 Conclusion

After using the Plackett-Burman design to screen out candidates, here are the

experimental factors:

1. Packet Arrival Distribution

2. Traffic Protocol

3. Availability Zone

4. Packet Size Distribution

5. VM Instance Type
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Figure A.5: Results
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Appendix B:

Baseline Experiments

T
his appendix describes the process of conducting performance testing on the baseline

platform. These experiments define the standard to which the cloud performance is

compared. The discussion begins with an explanation behind the selection of the baseline

platform, followed by the materials and equipment needed to conduct the experiments.

After describing the procedures and process of conducting the experiments, results are

presented along with a concluding statement regarding the results.

B.1 Introduction and Theory

Amazon Elastic Compute Cloud (EC2) uses Xen virtualization to deliver cost-

effective, enterprise-class platforms to power user applications [32]. Xen virtualization

allows Amazon to separate the logical desktop, in the form of a virtual machine, from the

physical machine. Since the cloud environment uses virtualization to create one or more

virtual machines on a single host, a logical choice for a baseline network is a network

that uses a similar construct. This study uses a baseline network created with VMWare

virtual machines (VMs) running on a single host machine. Software such as VMWare

and VirtualBox have long-standing reputations in the networking community for delivering

virtualization in this fashion. In order to test whether virtual machine (VM) instances in

the cloud behave as one would expect VMs to behave on any network, their performance

is compared to the performance of VMs on the baseline network.

B.2 Materials and Equipment

In order to conduct the baseline network experiments, the following materials and

equipment are needed:

1. Host Machine - The host machine has the following attributes:
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(a) Windows 7 Enterprise Service Pack 1

(b) 8 GB Memory

(c) 64-bit Operating System

(d) Intel Xeon dual 3.00 GHz processors

2. VMWare Software - The host machine runs VMWare Desktop 9.0.0

3. Two Virtual Machines - The sender and receiver virtual machines created in VMWare

have the following attributes:

(a) Ubuntu 13.0.4 64-bit operating system

(b) Intel Xeon 3 GHz processor

(c) 1 Virtual CPU

(d) 1 GB Memory

(e) 410 GB Storage

4. Distributed Internet Traffic Generator(D-ITG) Software - Section 2.3.2 describes D-

ITG software. D-ITG software must be installed on each VM instance to generate

and receive traffic workload for the experiments.

5. Experimental Factors - Table 3.1 provides a list of experimental factors along with

their corresponding levels. Two of the five factors, Instance Type and Availability

Zone, only apply to the Amazon cloud environment, which is why the baseline

network considers the following three experimental factors:

(a) Packet Size Distribution - The D-ITG software allows users to set the packet

size distribution.

(b) Packet Arrival Distribution - The D-ITG software allows users to set the packet

arrival distribution.
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(c) Traffic Protocol - The D-ITG software allows users to set the traffic protocol.

6. Data Input Spreadsheet Software - Software such as Microsoft Excel is used to

capture the results in spreadsheet form and perform mathematical operations such

as calculating averages.

B.3 Procedures and Process

B.3.1 PING.

Network latency provides insight regarding the quality of service provided on a

network. PING measures the Round-Trip Time (RTT), providing a measure of network

latency. In order to measure network latency on the baseline network, the PING utility is

run from one VM to the other VM, and statistics are captured regarding latency and packet

loss. The test is repeated five times, for a total of six experimental runs.

B.3.2 Workload Tests.

Capturing various performance metrics under diverse workload provides further

insight regarding network performance. Workload tests are constructed using the D-ITG

software. D-ITG needs to run on both sender and receiver VMs. Figure B.1 illustrates an

example of the commands used in D-ITG. Experimental runs follow the configurations

outlined in Figure B.2. The study uses 18 traffic workload configurations, that are

standardized across all platforms to allow comparison. Traffic configurations 1-18 represent

characteristics of traffic that is likely to be found on a real network. For example, as shown

in Figure B.2, Configuration 1 has TCP traffic with a constant packet size of 512 bytes

and a constant packet arrival distribution of 1,000 packets per second. Configuration 1 for

each of the four cloud platforms has the same traffic load, allowing a standard comparison

among all platforms. Experiments under each configuration are repeated five times, for a

total of six experimental runs per configuration.
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Figure B.1: D-ITG Commands

Figure B.2: Baseline Experiment Configurations: 1-18

B.4 Results

B.4.1 PING Test Results.

Figure B.3 shows the results from the six experimental PING runs. The average

latency over all six experiments was 0.258 ms, and the average packet loss percentage
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was 0 percent. Ping tests from each cloud configuration are compared to these values in

Chapter IV.

Figure B.3: Baseline Ping Results

B.4.2 Workload Test Results.

Figure B.4 shows the packet loss values for each experimental run on the baseline

network, along with the variance associated with the experimental runs. Figures B.5, B.6

and B.7 show the same information for delay, jitter and throughput respectively. Figure

B.8 shows the mean values for all metrics for each of the 18 experimental configurations.

These mean values are compared with the mean values from each of the cloud platforms in

Chapter IV.
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Figure B.4: Baseline Packet Loss

B.5 Conclusion

Experimental runs have sufficiently small variance to allow adequate comparison of

mean values. These configurations represent typical traffic expected on a real network.
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Figure B.5: Baseline Delay

78



Figure B.6: Baseline Jitter
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Figure B.7: Baseline Throughput
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Figure B.8: Baseline Mean Values
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Appendix C:

Cloud Experiments

T
his appendix describes the process of conducting performance testing in the cloud.

The cloud is divided into four unique platforms that are independently compared to

the baseline platform. The discussion begins with a brief introduction and theory, followed

by the materials and equipment needed to conduct the experiments. After describing the

procedures and process of conducting the experiments, results are presented along with a

concluding statement regarding the results.

C.1 Introduction and Theory

In order to test the feasibility of using the Amazon cloud as a networking and

distributed application prototyping testbed, cloud performance must be considered.

Network architectures constructed in the cloud should show similar behavior to other

networks that have been traditionally used for this purpose. Each cloud platform is provided

statistically equivalent workload to the workload provided to the baseline platform,

performance metrics are gathered, and results are interpreted.

C.2 Materials and Equipment

In order to conduct the cloud experiments, the following materials and equipment are

needed:

1. List of Factors - Here are the experimental factors:

(a) Availability Zone - When creating an instance in the Amazon Cloud, users are

given the option to choose an Availability Zone for that instance.

(b) Packet Size Distribution - The D-ITG software allows users to set the packet

size distribution.
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(c) Packet Arrival Distribution - The D-ITG software allows users to set the packet

arrival distribution.

(d) Traffic Protocol - The D-ITG software allows users to set the traffic protocol.

(e) Instance Type - When creating an instance in the Amazon Cloud, users are

given the option to choose an instance type.

2. Amazon Cloud VM Instances - Instances must be configured in the cloud according

to the factor levels specified in each experimental run.

3. Distributed Internet Traffic Generator(D-ITG) Software - Section 2.3.2 describes D-

ITG software. D-ITG software must be installed on each VM instance to generate

and receive traffic workload for the experiments.

4. Cloud Configurations - This study uses four unique cloud platforms for testing:

(a) Cloud Platform 1 - The first cloud platform consists of two M1.Medium

instance types that are in the same Availability Zone.

(b) Cloud Platform 2 - The second cloud platform consists of two M1.Large

instance types that are in the same Availability Zone.

(c) Cloud Platform 3 - The third cloud platform consists of two M1.Medium

instance types that are in different Availability Zones.

(d) Cloud Platform 4 - The fourth cloud platform consists of two M1.Large instance

types that are in different Availability Zones.

5. Constant Parameters - While the five experimental factors will be varied during the

experiments, the remaining parameters are not directly altered:

(a) Workload Generator Random Seed - The D-ITG software randomly alters this

value before each experimental run to ensure that traffic loads of the same
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configuration are not exactly the same, although they are statistically equivalent.

For example, the software may send TCP traffic with 512 byte packets, in a

Poisson distribution, with a mean value of 512 packets per second during one

experimental run. During another experimental run of that same configuration,

the software will not send packets in an identical pattern as the previous run,

but will ensure that it achieves a mean value of 512 packets per second. This

makes is difficult for a system to optimize its performance based solely on

the test itself, as the system must handle a variety of different, yet statistically

equivalent conditions.

(b) Operating System - All cloud VMs run Linux Ubuntu Server 13.04.

(c) Processor - All cloud VMs run a 64 bit processor.

(d) Virtual CPUs - The number of virtual CPUs in a VM varies by instance type.

M1.Medium instances have one virtual CPU, and M1.Large instances have two

virtual CPUs.

(e) Amazon EC2 Compute Units (ECU) - ECUs vary by instance type. M1.Medium

instances have two ECUs and M1.Large instances have four ECUs.

(f) Memory - Memory capacity varies by instance type. M1.Medium instances

have 3.75 GB of memory, and M1.Large instances have 7.5 GB of memory.

(g) Storage - Storage capacity varies by instance type. M1.Medium instances have

410 GB of storage, and M1.Large instances have two drives with 420 GB of

storage each.

(h) Network Resource Reservation - Amazon promises a moderate network

resource reservation for both the M1.Medium and M1.Large instances.
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(i) Amazon Region - Since this parameter was not chosen as a factor through the

Plackett-Burman design, the region is held constant. All cloud experiments take

place in the Virginia region.

(j) Time of Day - Since this parameter was not chosen as a factor through the

Plackett-Burman design, the experiments are not restricted to any particular

time of day.

(k) Performance of Underlying Amazon Hardware - This parameter is not under

the user’s control. This study assumes that Amazon’s underlying hardware is

sufficient to perform cloud experiments.

(l) Performance of Amazon Network Management/Virtualization Software - This

parameter is not under the user’s control. This study assumes that Amazon’s

network management and virtualization software is sufficient to conduct cloud

experiments.

6. Data Input Spreadsheet Software - Software such as Microsoft Excel is used to

capture the results in spreadsheet form and perform mathematical operations such

as calculating averages.

C.3 Procedures and Process

C.3.1 PING Tests.

PING measures the Round-Trip Time (RTT), providing a measure network latency.

Since there are four unique cloud configurations, there are four different sets of PING tests.

The PING tests consist of running the PING utility from one VM instance to the other VM

instance and capturing the statistics that are native to the utility. Each test is repeated five

times, for a total of six experimental runs per cloud configuration, or 24 total experimental

runs.
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C.3.2 Workload Tests.

Configurations 1-18 represent characteristics of traffic that is likely to be found on a

real network. For example, packet arrival distributions range up to 4096 packets per second.

C.4 Results

C.4.1 PING Test Results.

Figure C.1 shows the results of the ping experiments. For example, Cloud Platform 1

is in the upper left hand corner. The bottom half of the rectangle shows the results of each

of the six experimental runs. Cloud Platform 1 has latency values in milliseconds of 0.64,

0.62, 0.59, 0.65, 0.58 and 0.61. In all cases, Cloud Platform 1 had zero packet loss. As a

result, Cloud Platform 1 has an average latency of 0.62 ms. The other three configurations

are interpreted in a similar fashion. Here is a summary of the cloud configurations PING

tests:

1. Cloud Platform 1 - Cloud Platform 1 has an average latency of 0.62 ms, and 0 percent

packet loss.

2. Cloud Platform 2 - Cloud Platform 2 has an average latency of 0.52 ms, and 0 percent

packet loss.

3. Cloud Platform 3 - Cloud Platform 3 has an average latency of 1.25 ms, and 0 percent

packet loss.

4. Cloud Platform 1 - Cloud Platform 1 has an average latency of 1.22 ms, and 0 percent

packet loss.

These values are compared to the PING tests from the baseline network in Chapter IV.

86



Figure C.1: Cloud Ping Tests Results

C.4.2 Workload Test Results.

This section describes the workload test results from each of the four cloud platforms.

These metrics are independently compared to the metrics from the baseline platform in

Chapter IV.

C.4.2.1 Cloud Configuration 1.

Figures C.2, C.3, C.4 and C.5 show the measurements for packet loss, delay, jitter and

throughput respectively under Cloud Platform 1, along with corresponding variances under

all 18 traffic workload configurations. This data is used to construct the mean values shown
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in Figure C.6. Mean values for Cloud Platform 1 are compared to the mean values of the

baseline platform as well as other cloud platforms in Chapter IV.

Figure C.2: Cloud Platform 1 Packet Loss

C.4.2.2 Cloud Configuration 2.

Figures C.7, C.8, C.9 and C.10 show the measurements for packet loss, delay, jitter

and throughput respectively under Cloud Platform 2, along with corresponding variances

under all 18 traffic workload configurations. This data is used to construct the mean values
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Figure C.3: Cloud Platform 1 Delay

shown in Figure C.11. Mean values for Cloud Platform 2 are compared to the mean values

of the baseline platform as well as other cloud platforms in Chapter IV.

C.4.2.3 Cloud Configuration 3.

Figures C.12, C.13, C.14 and C.15 show the measurements for packet loss, delay, jitter

and throughput respectively under Cloud Platform 3, along with corresponding variances

under all 18 traffic workload configurations. This data is used to construct the mean values
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Figure C.4: Cloud Platform 1 Jitter

shown in Figure C.16. Mean values for Cloud Platform 3 are compared to the mean values

of the baseline platform as well as other cloud platforms in Chapter IV.

C.4.2.4 Cloud Configuration 4.

Figures C.17, C.18, C.19 and C.20 show the measurements for packet loss, delay, jitter

and throughput respectively under Cloud Platform 4, along with corresponding variances

under all 18 experimental configurations. This data is used to construct the mean values
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Figure C.5: Cloud Platform 1 Throughput

shown in Figure C.21. Mean values for Cloud Platform 4 are compared to the mean values

of the baseline platform as well as other cloud platforms in Chapter IV.

91



Figure C.6: Cloud Platform 1 Mean Values
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Figure C.7: Cloud Platform 2 Packet Loss
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Figure C.8: Cloud Platform 2 Delay

94



Figure C.9: Cloud Platform 2 Jitter
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Figure C.10: Cloud Platform 2 Throughput
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Figure C.11: Cloud Platform 2 Mean Values
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Figure C.12: Cloud Platform 3 Packet Loss
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Figure C.13: Cloud Platform 3 Delay
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Figure C.14: Cloud Platform 3 Jitter
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Figure C.15: Cloud Platform 3 Throughput
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Figure C.16: Cloud Platform 3 Mean Values
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Figure C.17: Cloud Platform 4 Packet Loss
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Figure C.18: Cloud Platform 4 Delay
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Figure C.19: Cloud Platform 4 Jitter

C.5 Conclusion

Experimental runs have sufficiently small variance to allow adequate comparison of

mean values. These configurations represent typical traffic expected on a real network.

105



Figure C.20: Cloud Platform 4 Throughput
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Figure C.21: Cloud Platform 4 Mean Values
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14. ABSTRACT
The goal of this research is to determine the feasibility of performing integrated network experimentation using cloud
services. This research uses performance metrics to compare computing architectures constructed in the cloud to
architectures that run on traditional networks. If so, then cloud network architectures will display the same expected
behavior as traditional network architectures, thus allowing the construction of networking testbeds at potentially
substantial cost savings. Since the Amazon cloud does not support broadcast or multicast traffic, distributed applications
face a challenge. Many distributed applications use broadcast or multicast to communicate real-time information.
This research includes a case study for developing a distributed network application in the cloud which overcomes the
restriction on broadcast and multicast traffic. During performance testing, the baseline network and cloud network
configurations are provided statistically equivalent traffic workload. Metrics such as packet loss, delay, jitter and
throughput are compared to determine relative performance. Analysis of the experimental results shows that in each
case, the cloud network configurations performed at or above the performance level of the baseline network. Therefore,
the public cloud infrastructure is suitable for performing integrated network experimentation. This research continues
Project Everest’s efforts to leverage cloud services for network experimentation. Project Everest is a framework which
aims to combine emulation and cloud infrastructure into a single testbed using the Amazon Elastic Compute Cloud
(EC2). Their tests indicate satisfactory cloud performance, but they recommend testing cloud network performance
under various workload. This research carries out those performance tests.
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